Dark Worlds

A shadow cosmos, woven silently into our own, may have its own rich inner life

By Jonathan Feng and Mark Trodden
In September 23, 1846, Johann Gottfried Galle, director of the Berlin Observatory, received a letter that would change the course of astronomical history. It came from a Frenchman, Urbain Le Verrier, who had been studying the motion of Uranus and concluded that its path could not be explained by the known gravitational forces acting on it. Le Verrier suggested the existence of a hitherto unobserved object whose gravitational pull was perturbing Uranus's orbit in precisely the way required to account for the anomalous observations. Following Le Verrier's directions, Galle went to his telescope that night and discovered the planet Neptune.

A similar drama—in which astronomers observe anomalous cosmic motions, deduce the presence of new matter and go out to hunt for it—is playing out again today in modern cosmology. In the role of Uranus, we see stars and galaxies moving in ways they should not; in the role of Neptune, we deduce the existence of hitherto unobserved substances, provisionally called dark matter and dark energy. From the types of anomalies we see, we can glean a few basic facts about them. Dark matter seems to be a sea of invisible particles that fills space unevenly; dark energy is spread out uniformly and acts as if it is woven into the fabric of space itself. Scientists have yet to repeat Galle's accomplishment of pointing an instrument at the sky and glimpsing the unseen players definitively, but tantalizing inklings, such as blips in particle detectors, continue to accumulate.

From its discovery as a shadowy force on Uranus, Neptune proved to be a fascinating world in its own right. Might the same be true of dark matter and dark energy? Scientists are increasingly considering the possibility that dark matter, in particular, is not just a contrivance to account for the motion of visible matter but a hidden side of the universe with a rich inner life. It may consist of a veritable zoo of particles interacting through novel forces of nature—an entire universe interwoven silently with our own.

THE DARK SIDE

These ideas are a shift from the long-held assumption that dark matter and dark energy are the most antisocial substances in the cosmos. Since astronomers first inferred the existence of dark matter in the 1930s, they have considered inertness its defining property. Observations suggest it outweighs ordinary matter by a factor of 6 to 1. Galaxies and galaxy clusters are embedded in giant balls, or "halos," of dark matter. For such a mass of material to elude direct detection, astronomers reason that it has to consist of particles that scarcely interact with ordinary matter or, indeed, with one another. All they do is provide the gravitational scaffolding for luminous matter.

Astronomers think the halos formed early on in cosmic history and then drew in ordinary matter, which, being capable of a rich range of behaviors, developed into intricate structures, while dark matter, being inert, remained in its primitive state. As for dark energy, its only role appears to be to accelerate cosmic expansion, and the available evidence indicates it has remained completely unchanged over the life of the cosmos.

The prospect that dark matter might be rather more interesting is driven not so much by the field of astronomy but by detailed investigations of the inner workings of atoms and the world of subatomic particles. Particle physicists have a tradition of seeing glimmers of unknown forms of matter in the behavior of known matter, and their evidence is completely independent of cosmic motions.

In the case of dark matter, the train of thought began with the discovery of radioactive beta decay in the early 1900s. Italian theorist Enrico Fermi sought to explain the phenomenon
What Lurks in the Shadows

Modern scientific instruments have revealed the existence of unseen mass and energy in the universe but have barely scratched the surface of the types of stuff that might make it up.

Nonbaryonic Matter 23%
Exotic matter may exert and feel only a subset of the known forces, as well as forces of its own.

Baryonic Matter 4%
Ordinary matter, the stuff of atoms, can exert and feel all the known forces of nature. It is as we can directly see.

Dark Energy 73%

Hot
Some forms of matter, such as neutrinos, come into existence having a velocity comparable to that of light.

Self-Interacting
Particles may interact with one another much more strongly than they do with ordinary particles.

Cold
Some forms of matter, when created, move linguistically.

Vacuum Energy
Seemingly empty space may still be packed with energy imparted by the unavoidable quantum fluctuations of matter.

Mirror Matter
Each ordinary particle may have a kind of doppleganger.

Hidden Forces ("WIMPless")
Particles may interact with dark versions of our electromagnetic and weak forces.

Super-symmetric particles
The principle of supersymmetry usually gives rise to novel particles.

Baryonic Matter
Particles arising from the decay of WIMPs may respond to gravity but not the weak nuclear force.

WIMPs
Weakly interacting massive particles respond to gravity and the weak nuclear force.

Anomalous
Particles even lighter and more feebley interacting than neutrinos would solve a nagging mystery with the strong nuclear force.
Whether they can truly explain dark matter, though, depends on how many of them there are. Here is where the particle physics argument really gains traction. Like any other breed of particle, WIMPs would have been produced in the fury of the big bang. High-energy particle collisions back then both created and destroyed WIMPs, allowing a certain number of them to exist at any given moment. This number varied with time depending on two competing effects driven by the expansion of the universe. The first was the cooling of the primordial soup, which reduced the amount of energy available to create WIMPs, so that their number diminished. The second effect was the dilution of particles, which reduced the frequency of collisions until they effectively ceased to occur. At that point, about 10 nanoseconds after the big bang, the number of WIMPs became frozen in. The universe no longer had either the energy needed to create WIMPs or the dense concentrations of mass needed to destroy them.

Given the expected mass of WIMPs and the strength of their interactions, which govern how often they annihilate one another, physicists can easily calculate how many WIMPs should be left over. Rather amazingly, the number matches the number required to account for cosmic dark matter today, within the precision of the mass and interaction-strength estimates. This remarkable agreement is known as the WIMP coincidence. Thus, particles motivated by a century-old puzzle in particle physics beautifully explain cosmological observations.

This line of evidence, too, indicates that WIMPs are inert. A quick calculation predicts that nearly one billion of these particles have passed through your body since you started reading this article, and unless you are extraordinarily lucky, none has had any discernible effect. Over the course of a year you might expect just one of the WIMPs to scatter off the atomic nuclei in your cells and deposit some meager amount of energy. To have any hope of detecting such events, physicists set their particle detectors to monitor large volumes of liquid or other material for long periods. Astronomers also look for bursts of radiation in the galaxy that mark the rare collision and annihilation of orbiting WIMPs. A third way to find WIMPs is to try to synthesize them in terrestrial experiments [see box on page 44].

OUT-WIMPING THE WIMPS

The extraordinary effort now being devoted to WIMP searches might leave the impression that these particles are the only theoretically plausible dark matter candidate. Are they? In fact, recent developments in particle physics have uncovered other possibilities. This work hints that the WIMP is just the tip of the iceberg. Lurking under the surface could be hidden worlds, complete with their own matter particles and forces.

One such development is the concept of particles even monowimpier than WIMPs. Theory suggests that WIMPs formed in the

by postulating a new force of nature and new force-carrying particles that caused atomic nuclei to decay. This new force was similar to electromagnetism and the new particles to photons, the particles of light—but with a key twist. Unlike photons, which are massless and therefore highly mobile, Fermi argued that the new particles had to be heavy. Their mass would limit their range and account for why the force causes nuclei to fall apart but otherwise goes unnoticed. To reproduce the observed half-life of radioactive isotopes, they had to be quite heavy—around 100 times that of the proton, or about 100 giga-electron-volts, in the standard units of particle physics.

The new force is now known as the weak nuclear force and the hypothesized force-carrying particles are the \(W \) and \(Z \) particles, which were discovered in the 1980s. They are not dark matter themselves, but their properties hint at dark matter. A priori, they should not be so heavy. Their high mass suggests that something is acting on them—novel particles that cause them to take on mass like a friend who encourages you to give into temptation and eat another slice of cake. One goal of the Large Hadron Collider is to look for those particles, which should have masses comparable to those of the \(W \) and \(Z \). Indeed, physicists think dozens of types of particles may be waiting to be discovered—one for each of the known particles, paired off in an arrangement known as supersymmetry.

These hypothetical particles include some collectively known as weakly interacting massive particles, or WIMPs. The name arises because the particles interact only by means of the weak nuclear force. Being immune to the electric and magnetic forces that dominate the everyday world, they are totally invisible and have scarcely any direct effect on normal particles. Therefore, they make the perfect candidate for cosmic dark matter.

Big Freeze

In the hot, dense early universe, dark matter particles such as WIMPs were created and destroyed in a dynamic equilibrium. As the cosmos expanded, it cooled and eventually was no longer able to create new particles. Those left over became so spread out that they ceased colliding and getting destroyed. For WIMPs, theory makes a firm prediction for the amount of material that survived, which is consistent with observations.
first nanosecond of cosmic history might have been unstable. Seconds to days later they could have decayed to particles that have a comparable mass but do not interact by the weak nuclear force; gravity is their only connection to the rest of the natural world. Physicists, tongue in cheek, call them super-WIMPs.

The idea is that these particles, rather than WIMPs, constitute the dark matter of today's universe. Super-WIMPs would elude direct observational searches but might be inferred from the telltale imprint they would leave on the shapes of galaxies. When created, super-WIMPs would have been moving at a significant fraction of the speed of light. They would have taken time to come to rest, and galaxies could not have begun forming until they did. This delay would have left less time for matter to accrete onto the centers of galaxies before cosmic expansion diluted it. The density at the center of dark matter halos should therefore reveal whether they are made of WIMPs or super-WIMPs; astronomers are now checking. In addition, the decay from WIMP to super-WIMP should have produced photons or electrons as a by-product, and these particles can smash into light nuclei and break them apart. There is some evidence that the universe has less lithium than expected, and the super-WIMP hypothesis is one way to explain the discrepancy.

The super-WIMP scenario also inspires fresh possibilities for what experimental physicists might observe. For instance, the original WIMP need not have been either dark or wimpy; it could have had an electric charge. Any charge it had would not have affected the evolution of the cosmos, because the particle decayed so quickly. It would, however, mean that WIMPs would be extremely conspicuous if experimentalists were able to recreate them. Particle detectors would register them as electrons on steroids; having the same charge as an electron but 100,000 times more mass, such a particle would barrel through the detectors, leaving spectacular tracks in its path.

DARK FORCES, HIDDEN WORLDS

The main lesson of super-WIMP models is that there is no reason, either theoretically or observationally, that dark matter should be as boring as astronomers tend to presume. Once one admits the possibility of hidden particles with properties that go beyond the standard WIMP scenario, it is natural to consider the full range of possibilities. Could there be a whole sector of hidden particles? Could there be a hidden world that is an exact copy of ours, containing hidden versions of electrons and protons, which combine to form hidden atoms and molecules, which combine to form hidden planets, hidden stars and even hidden people?

The possibility that a hidden world could be identical to ours has been explored at length, beginning in 1956 with an offhand comment in a Nobel Prize-winning paper by Tsung-Dao Lee and Chen Ning Yang and more recently by many others, including Robert Foot and Raymond Volkas of the University of Melbourne in Australia. The idea is truly tantalizing. Could it be that what we see as dark matter is really evidence for a hidden world that mirrors ours? And are hidden physicists and astronomers even now peering through their telescopes and wondering what their dark matter is, when in fact their dark matter is us?

Unfortunately, basic observations indicate that hidden worlds cannot be an exact copy of our visible world. For one, dark matter is six times more abundant than normal matter. For another, if dark matter behaved like ordinary matter, halos would have flattened out to form disks like that of the Milky Way—with dramatic
gravitational consequences that have not been seen. Last, the existence of hidden particles identical to ours would have affected cosmic expansion, altering the synthesis of hydrogen and helium in the early universe; compositional measurements rule that out. These considerations argue strongly against hidden people.

That said, the dark world might indeed be a complicated web of particles and forces. In one line of research, several investigators, including one of us (Peng) and Jason Kumar of the University of Hawaii at Manoa, have found that the same supersymmetric framework that leads to WIMPs allows for alternative scenarios that lack WIMPs but have multiple other types of particles. What is more, in many of these WIMP-less theories, these particles interact with one another through newly postulated dark forces. We found that such forces would alter the rate of particle

How to See the Unseeable

So far, everything astronomers know about dark matter comes from its gravitational effects on visible matter. But they need to detect it directly if they are to find out what it is. That will not be easy: dark matter is elusive by definition. Nevertheless, motivated by the promise of discovering what a quarter of the universe is, thousands of researchers are looking. Most of their efforts have focused on WIMPs, and the three common search strategies are to look for the particles' annihilation, scattering, and production.

ANNIHILATION When two WIMPs meet, they obliterate each other and leave behind a clump of other particles such as electrons, antielectrons (known as positrons) and neutrinos. Such annihilation cannot be very common, or else no WIMPs would be left by now. Fortunately, current experiments are sensitive enough to notice if even a tiny fraction of WIMPs are being annihilated.

Detectors on high-altitude balloons and satellites have sought electrons and positrons. In the coming year the space shuttle is scheduled to transport the Alpha Magnetic Spectrometer to the International Space Station, where it will sit docked, looking for positrons. Other observatories such as the Super-Kamiokande experiment in Japan and IceCube in Antarctica are watching for neutrinos.

DIRECT DETECTION Dark matter should be streaming through our planet as it travels through the galaxy. On rare occasions, a WIMP will bump into an atomic nucleus and cause it to recoil, just as a pool ball does when struck by the cue ball. The predicted recoil energies are almost imperceptible but may be within the range of sensitive detectors. Cryogenic technology slows the natural vibrations of atoms and makes it easier to notice any recoils. The energy deposited in the detector holds the key to pinning down the fundamental properties of dark matter. Two experiments, DAMA and CoGeNT, have claimed to detect a signal (below), but others, such as XENON and CDMS, have found nothing. These and other new experiments are improving their sensitivities rapidly, promising an exciting near future for this field.

PRODUCTION Dark matter might be created at particle colliders, such as the Large Hadron Collider at CERN near Geneva, a mammoth experiment that collides protons together at extremely high energies. Dark matter production is dark matter annihilation played backward: if dark matter can annihilate into normal particles, it can also be produced by the collisions of normal particles. The signature of dark matter production would be the observation of collisions in which energy and momentum seem to go missing, indicating that some unreactive particles have been produced and then escaped the detector without registering. These giant experiments, designed to tease out the secrets of the subatomic world, may wind up discovering the dominant form of matter in the universe.

Experiments That Claim to Have Detected Dark Matter Particles

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CDMS</th>
<th>DAMA</th>
<th>CoGeNT</th>
<th>PAMELA</th>
</tr>
</thead>
<tbody>
<tr>
<td>What it stands for</td>
<td>Cryogenic Dark Matter Search</td>
<td>DArk Matter</td>
<td>Coherent Germanium Neutrino Technology</td>
<td>Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics</td>
</tr>
<tr>
<td>Where it is</td>
<td>Soudan mine in Minnesota</td>
<td>Gran Sasso underground lab in Italy</td>
<td>Soudan mine</td>
<td>Attached to Russian satellite</td>
</tr>
<tr>
<td>What it has seen</td>
<td>Two recoil events</td>
<td>Annual variation in the number of recoil events</td>
<td>Recoil events</td>
<td>Excess of positrons</td>
</tr>
<tr>
<td>Why the signal might be real</td>
<td>Direct, expected signal of dark matter</td>
<td>Statistically significant</td>
<td>Sensitive to ultralow energy recoils</td>
<td>Direct, expected signal of dark matter annihilation</td>
</tr>
<tr>
<td>Why it might not be</td>
<td>Not statistically significant</td>
<td>Apparently excluded by other results</td>
<td>Normal nuclear events might be responsible</td>
<td>Could be explained by astrophysical sources</td>
</tr>
<tr>
<td>Which experiments will follow up</td>
<td>SuperCDMS, XENON</td>
<td>XENON, MAJORANA Demonstrator</td>
<td>XENON, MAJORANA Demonstrator</td>
<td>Alpha Magnetic Spectrometer</td>
</tr>
</tbody>
</table>
tion and annihilation in the early universe, but again the
bers work out so that the right number of particles are left
to account for dark matter. These models predict that dark
or may be accompanied by a hidden weak force or, even
er, a remarkably, a hidden version of electromagnetism, im-
hat dark matter may emit and reflect hidden light.
this “light” is, of course, invisible to us, and so the dark mat-
mails dark to our eyes. Still, new forces could have very
ificant effects. For example, they could cause clouds of dark
icles to become distorted as they pass through one another.
onomers have searched for this effect in the famous Bulle-
ter, which consists of two clusters of galaxies that have
 through each other. Observations show that the brief
pling of clusters left the dark matter largely unper-
ed, indicating that any dark forces could not be very strong.
archers are continuing to look in other systems.
uch forces would also allow dark particles to exchange en-
 and momentum with one another, a process that would
to homogenize them and cause initially lopsided halos to
me spherical. This homogenizing process should be most
ounced for small galaxies, also known as dwarf galaxies,
re the dark matter is slow-moving, particles linger near one
er and small effects have time to build up. The observa-
that small galaxies are systematically ronder than their
ors would be a telltale sign of dark matter interac-
 thorough new forces. Astronomers are only just begin-
taking the requisite studies.

FROM ONE DARK THING TO ANOTHER
Dually interesting possibility is that dark matter interacts
dark energy. Most existing theories treat the two as di-
sected, but there is no real reason they must be, and physi-
cians note that, if anything, they interfere with each other.
ephe is that the models must make an explicit opportunity to
ight mitigate some cosmological problems, such as the
idence problem—the question of why the two have com-
 densities. Dark energy is roughly three times as dense
rk matter, but the ratio might have been 1,000 or a million.
 coincidence would make sense if dark matter somehow
 ered the emergence of dark energy.
 ouplings with dark energy might also allow dark matter
cles to interact with one another in ways that ordinary
les do not. Recent models allow and sometimes even
 date dark energy to exert a different force on dark matter
d it does on ordinary matter. Under the influence of this
, dark matter would tend to pull apart from any ordinary
 er it had been interlaced with. In 2006 Marc Kamionkow-
f the California Institute of Technology and Michael Kes-
then at the Canadian Institute for Theoretical Astrophys-
a Toronto, suggested looking for this effect in dwarf galax-
hat are being torn apart by their larger neighbors. The
d dwarf galaxy, for example, is being dismembered by
ili Way, and astronomers think its dark matter and ordi-
 laries are spilling out into our galaxy. Kamionkowski and
 en calculate that if the forces acting on dark matter are at
percent stronger or weaker than the forces acting on the
ary matter, then the two components should drift apart
 observable amount. At present, however, the data show-
ing of the sort.
other idea is that a connection between dark matter and
dark energy would alter the growth of cosmic structures, which
depends delicately on the composition of the universe, includ-
ing its dark side. A number of researchers, including one of us
(Trodden) with collaborators Rachel Bean, Emma Flanagan and
Istvan Lazlo of Cornell University, have recently used this
 powerful constraint to rule out a large class of models.

Despite these null results, the theoretical case for a complex
dark world is now so compelling that many researchers would
find it more surprising if dark matter turned out to be nothing
more than an undifferentiated swarm of WIMPs. After all, visi-
bile matter comprises a rich spectrum of particles with multiple
 interactions determined by beautiful underlying symmetry
principles, and nothing suggests that dark matter and dark en-
ergy should be any different. We may not encounter dark stars,
planets or people, but just as we could hardly imagine the solar
ystem without Neptune, Pluto and the swarm of objects that
lie even farther out, one day we might not be able to conceive of
a universe without an intricate and fascinating dark world.

MORE TO EXPLORE

Approaches to Understanding Cosmic Acceleration. Alessandra Silvestri and Mark Trodden in Reports on Progress in Physics, Vol. 72, No. 9 (Paper No. 096999; September 2009). arxiv.org/abs/0904.8024

COMMENT ON THIS ARTICLE www.ScientificAmerican.com/kw2010